
GitHub & DevOps – using AKS

PROBLEM STATEMENT :

In today's rapidly changing business landscape, traditional application deployment falls short in

meeting the growing demands for scalability and cross-platform compatibility. To address these

challenges, a DevOps solution combining GitHub Actions and Azure Kubernetes Services (AKS) is

crucial. This solution automates container management, ensuring efficient, secure, and consistent

application deployment across diverse environments.

SOLUTION ARCHITECTURE :

Prerequisites:

• Access to an Azure subscription

• Access to a GitHub account

• Basic knowledge of executing commands by using the Azure CLI

• Basic knowledge of Kubernetes and its concepts

• Basic knowledge of AKS and its concepts

• Basic knowledge of Git and GitHub

Step 1: Creating a Kubernetes cluster in azure portal.

Before creating a Kubernetes cluster you need to create a resource group in

which your cluster will reside

When setting up your cluster, the critical step is selecting the right node size and determining the

number of nodes required. The node count represents the VMs within your cluster, with a maximum

limit of 1000 nodes. Remember that you can adjust the node count post-deployment, but the

instance type remains fixed. Keep in mind that if you opt for Linux as the OS, hosting Windows

applications won't be possible, and vice versa.

You can also use CLI :

Add windows server 2019 node pool:

Ex:

az aks nodepool add \ */used to add a node pool named npwin

--resource-group myResourceGroup \

--cluster-name myAKSCluster \

--os-type Windows \

--name npwin \

--node-count 1

Add a windows server node pool 2022:

For newer versions we need to specify os sku type.

Ex:

az aks nodepool add \

--resource-group myResourceGroup \

--cluster-name myAKSCluster \

--os-type Windows \

--os-sku Windows2022 \

--name npwin \

--node-count 1

connect to the cluster:

● To connect to the cluster we use the kubectl it can installed locally using the

command az aks install-cli.az aks get-credentials --resource-group

myResourceGroup --name myAKSCluster is the command used to configure

kubectl.

To check the status of each node execute the following command:

kubectl get nodes -o wide

Step 2 :

In Azure CLI clone the github repository

Step 3:

Build the Application WorkFlow

Step 4:

Create a YAML file for pushing and deploying

name: Build and push the latest build to staging

on:

 push:

 branches: [main]

jobs:

 build_push_image:

 runs-on: ubuntu-20.04

 steps:

 - uses: actions/checkout@v2

 - name: Set up Buildx

 uses: docker/setup-buildx-action@v1

 - name: Docker Login

 uses: docker/login-action@v1

 with:

 registry: ${{ secrets.ACR_NAME }}

 username: ${{ secrets.ACR_LOGIN }}

 password: ${{ secrets.ACR_PASSWORD }}

 - name: Build and push staging images

 uses: docker/build-push-action@v2

 with:

 context: .

 push: true

 tags: ${{secrets.ACR_NAME}}/contoso-website:latest

Commit the Changes:

Step 5:

Connect the AKS CLI

 az aks get-credentials –resource-group (name) –name (cluster name)

Step 6 :

apiVersion: apps/v1

kind: Deployment

metadata:

name: sam

labels:

app: sam

spec:

replicas: 1

template:

metadata:

name: sam

labels:

app: sam

spec:

nodeSelector:

"kubernetes.io/os": windows

containers:

- name: sam

image: E:/dotnet/framework/sam:asp netapp

resources:

limits:

cpu: 1

memory: 800M

ports:

- containerPort: 80

selector:

matchLabels:

app: sam

apiVersion: v1

kind: Service

metadata:

name: sam

spec:

type: LoadBalancer

ports:

- protocol: TCP

port: 80

selector:

app: sample

Deploy the application using kubectl apply:

kubectl apply -f sam.yaml

Your application is deployed.

Docker Configuration:

 search for Docker Login. Select the first result published by Docker.

Create a personal access token (PAT)

1. Go to the fork of the sample repository in the GitHub website. On the top right hand corner,

select your profile photo, then select Settings.

2. Select Developer settings at the bottom of the left menu.

3. Select Personal access tokens.

4. Select Generate new token.

5. Provide a name for your PAT, such as myPersonalAccessToken

6. Select the checkbox next to public_repo.

Install Helm

In this exercise, you use Helm version v3.3.1. Azure has a built action that downloads and installs

Helm.

1. Below the runs-on key, add a new steps key. Then, search for Helm tool installer. Select the

first result published by Azure.

deploy:

 runs-on: ubuntu-20.04

 needs: build_push_image

 steps:

 - uses: actions/checkout@v2

 - name: Helm tool installer

 uses: Azure/setup-helm@v1

 with:

 # Version of helm

 version: # default is latest

1. To commit the changes, select the Start commit button. Enter a description for the commit,

and then select Commit new file.

2. In Cloud Shell, run git pull to fetch the latest changes. Then, run the following command to

tag and push the changes:

BashCopy

git tag -a v2.0.1 -m 'Creating first production deployment' && git push --tags

3. When prompted, provide your GitHub username, and the PAT created previously as the

password.

4. Open the Actions tab and see the running process.

CHALLENGES FACED:

1. Initial Configuration Complexity: Setting up AKS to meet project requirements initially posed

a challenge. Detailed documentation from Microsoft and reference materials from various

GitHub repositories were crucial resources.

2. Multi-Cloud Deployment Complexity: Deploying applications across multiple cloud

infrastructures increases the complexity of managing Kubernetes clusters. Coordinating

networking and storage across different environments can be challenging.

3. Storage Management: Handling storage can be a significant challenge, especially without

relying on a cloud service. Kubernetes requires efficient storage solutions, and configuring

this can be complex.

4. Security Concerns: Kubernetes is an open-source tool, which means security may not be as

robust as desired. Ensuring the security of containerized applications and the cluster itself

can be a challenge.

5. Tooling and Interface Transition: Transitioning from one environment to another, such as

moving from CLI to PowerShell, can be challenging. Different environments offer varying

features and require adaptation, adding complexity to DevOps processes

BUSINESS BENEFITS

Kubernetes offers robust load balancing capabilities for efficient traffic distribution.

It facilitates declarative configuration and automation, reducing the risk of human errors in managing

complex deployments.

Implementing CI/CD with GitHub Actions and AKS brought several significant business benefits. It

streamlined and automated the development pipeline, reducing manual image builds and

deployments, which saved valuable time. This increased efficiency translated into cost savings, as the

company no longer needed to allocate resources for time-consuming manual tasks. Furthermore, the

solution improved the overall agility of the development process, enabling quicker feature releases

and enhancing the company's competitiveness in the market.

